Abstract

The dissipative Hamiltonian realisation and robust H∞ control of induction motor considering iron losses for electric vehicle are investigated in this paper. First, the dissipative Hamiltonian of the electric vehicle drive system is obtained based on the system’s mathematical model in a synchronously rotating frame. Then, a robust co-ordinated tracking controller is designed based on the dissipative Hamiltonian form. One part of the controller is designed by using the method of interconnection and damping assignment to ensure the system’s stability, and another part is designed by using the Hamiltonian system’s robust H∞ technique to attenuate external disturbances. The simulation results show that the controller proposed in the paper works very well in robust tracking of induction motor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.