Abstract

The first part of this two-part paper presents a general theory of dissipative dynamical systems. The mathematical model used is a state space model and dissipativeness is defined in terms of an inequality involving the storage function and the supply function. It is shown that the storage function satisfies an a priori inequality: it is bounded from below by the available storage and from above by the required supply. The available storage is the amount of internal storage which may be recovered from the system and the required supply is the amount of supply which has to be delivered to the system in order to transfer it from the state of minimum storage to a given state. These functions are themselves possible storage functions, i.e., they satisfy the dissipation inequality. Moreover, since the class of possible storage functions forms a convex set, there is thus a continuum of possible storage functions ranging from its lower bound, the available storage, to its upper bound, the required supply. The paper then considers interconnected systems. It is shown that dissipative systems which are interconnected via a neutral interconnection constraint define a new dissipative dynamical system and that the sum of the storage functions of the individual subsystems is a storage function for the interconnected system. The stability of dissipative systems is then investigated and it is shown that a point in the state space where the storage function attains a local minimum defines a stable equilibrium and that the storage function is a Lyapunov function for this equilibrium. These results are then applied to several examples. These concepts and results will be applied to linear dynamical systems with quadratic supply rates in the second part of this paper.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call