Abstract

Time crystals represent temporal analogues of the spatial self-ordering exhibited by atomic or molecular building blocks of solid-state crystals. The pursuit of discrete time crystals (DTCs) in periodically forced Floquet closed systems has revealed how they can evade thermalization and loss of temporal order. Recently, it has been shown that even with coupling to the ambient and its concomitant noise, some states maintain their time crystalline order, forming dissipative DTCs. Here, we introduce a scheme for the realization and state control of dissipative DTCs hinging on pumping a Kerr optical resonator with a phase-modulated continuous-wave laser. We show the possible symmetry breaking states possess temporal long-range order and analyze the phase noise of the accompanying signature radio frequency (RF) subharmonic. Besides offering a technique for generating high-spectral-purity RF signals, this versatile platform empowers controlled switching between various DTC states through accessible experimental knobs, hence facilitating the future study of DTC phase transitions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.