Abstract
Diffraction in time and early-arrival phenomena will be studied in the context of dissipative systems. This theoretical consideration is done by using the linear scaled wave equation proposed in the framework of Caldirola-Kanai theory for the continuous quantum-classical transition. Two simple but physically important and interesting examples are studied, sudden release from a shutter where transient behaviors (diffraction in time) are seen; and also transmission through a time-dependent parabolic barrier where early-arrival is seen. Calculations show that diffraction in time is a non-classical effect and temporary behaviors are gradually suppressed as the friction increases. Furthermore, early-arrival is seen even in the classical regime. This means that early-arrival is not a non-classical phenomenon. This behavior will be explained by means of scaled trajectories which are just Bohmian trajectories in the quantum regime.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.