Abstract

The existence and stability of dissipative breathers in rf SQUID (Superconducting Quantum Interference Device) arrays is investigated numerically. In such arrays, the nonlinearity which is intrinsic to each SQUID, along with the weak magnetic coupling of each SQUID to its nearest neighbors, result in the formation of discrete breathers. We analyze several discrete breather excitations in rf SQUID arrays driven by alternating flux sources in the presence of losses. The delicate balance between internal power losses and input power, results in the formation of dissipative discrete breather (DDB) structures up to relatively large coupling parameters. It is shown that DDBs may locally alter the magnetic response of an rf SQUID array from paramagnetic to diamagnetic or vice versa.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.