Abstract

Irreversible processes taking place during nonlinear acoustic wave propagation are considered using a representation by loops in a thermodynamic parameter space. For viscous and heat conducting media, the loops are constructed for quasi-harmonic and sawtooth waves and the descriptive equations are formulated. The linear and nonlinear absorptions are compared. For relaxing media, the processes are frequency-dependent. The loops broadens, narrows, and bends. The linear and nonlinear relaxation losses of wave energy are shown. Residual stresses and irreversible strains appear for hysteretic media, and here, a generalization of Rayleigh loops is pictured which takes into account the nonlinearly frequency-dependent hereditary properties. These describe the dynamic behavior, for which new equations are derived.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.