Abstract

Pyrrolizidine alkaloids (PAs) and pyrrolizidine alkaloid N-oxides (PANOs) are toxic secondary metabolites in plants, and one kind of main exogenous pollutants of tea. Herein, the dissipation pattern and conversion behavior of PAs/PANOs were investigated during tea manufacturing and brewing using ultra high-performance liquid chromatography tandem mass spectrometry. Compared with PAs (processing factor (PF) = 0.73–1.15), PANOs had higher degradation rates (PF = 0.21–0.56) during tea manufacturing, and drying played the most important role in PANOs degradation. Moreover, PANOs were firstly discovered to be converted to corresponding PAs especially in the time-consuming (spreading of green tea manufacturing and withering of black tea manufacturing) and high-temperature tea processing (drying). Moreover, higher transfer rates of PANOs (≥75.84%) than that of PAs (≤56.53%) were observed during tea brewing. Due to higher toxicity of PAs than PANOs, these results are conducive to risk assessment and pollution control of PAs/PANOs in tea.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call