Abstract

The organic pollutants (OPs) present in compostable organic residues can be recovered in the final composts leading to environmental impacts related to their use in agriculture. However, the composting process may contribute to their partial dissipation that is classically evaluated through the concentration decrease in extractable OPs, without identification of the responsible mechanisms as mineralization or stabilization of OP as non-extractable residues (NER) or bound residues. The dissipation of four 14C-labeled OPs (fluoranthene; 4-n-nonylphenol, NP; sodium linear dodecylbenzene sulfonate, LAS; glyphosate) was assessed during composting of sewage sludge and green waste. The dissipation of LAS largely resulted from its mineralization (51% of initial LAS), whereas mineralization was intermediate for NP (29%) and glyphosate (24%), and negligible for fluoranthene. The NER pathway mostly concerned NP and glyphosate, with 45% and 37% of the recovered 14C being found as NER at the end of composting, respectively. In the final composts, the proportions of water soluble residues of OPs considered as readily available were <11% of recovered 14C-OPs. However, most fluoranthene remained solvent extractable (72%) and potentially available, whereas only 18% of glyphosate and less than 7% of both NP and LAS remained solvent extractable in the final compost.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.