Abstract

The potency of various uncouplers for collapsing the light-induced pH gradient across thylakoid membranes in intact chloroplasts was investigated by time-resolved optical spectroscopy. The thylakoid transmembrane pH gradient ([delta]pH) was monitored indirectly by measuring the rate of cytochrome (Cyt) f reduction following a light flash of sufficient duration to create a sizable [delta]pH. The results show that the rate of Cyt f reduction is controlled in part by the internal pH of the thylakoid inner aqueous space. At pH values from 6.5 to 8.0, the Cyt f reduction rate was maximal, whereas at lower pH values from 6.5 to 5.5 the reduction rate decreased to 25% of the maximal rate. The ability of three uncouplers, nigericin, carbonylcyanide m-chlorophenylhydrazone, and gramicidin, to accelerate the rate of Cyt f reduction was determined for intact chloroplasts isolated from spinach (Spinacia oleracea). The efficacy of the uncouplers for collapsing the [delta]pH was determined using the empirical relationship between the [delta]pH and the Cyt f reduction rate. For intact chloroplasts, nigericin was the most effective uncoupler, followed by carbonylcyanide m-chlorophenylhydrazone, which interacted strongly with bovine serum albumin. Gramicidin D, even at high gramicidin:chlorophyll ratios, did not completely collapse the pH gradient, probably because it partitions in the envelope membranes and does not enter the intact chloroplast.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call