Abstract

The regime of strong Langmuir turbulence characterized by the plasma nonisothermality and by the presence of an appreciable non-Maxwellian hot-electron component was experimentally studied. Turbulence was excited in the preliminary produced plasma by the relativistic electron beam. Thomson scattering of laser IR radiation served as the main diagnostic method. The spatial spectra of the Langmuir turbulence and of the attendant ion-sound turbulence were studied using Thomson collective scattering. Thomson incoherent scattering was used for studying the plasma electron distribution function and searching for the local dips of plasma density. Stark spectroscopy of turbulent microfields and the method of observation of plasma radiation at the double plasma frequency were also used. Based on the experimental data, the mechanism of Langmuir oscillation damping by plasma electrons was analyzed. The Langmuir wave conversion induced by the ion-sound turbulence is the most probable channel for energy transfer from the turbulence to plasma electrons, the low-frequency fluctuations being the direct consequence of the strong Langmuir turbulence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.