Abstract

We consider the propagation of magnetoelastic waves within a homogeneous and isotropic elastic medium exhibiting finite electric conductivity. An appropriate physical analysis leads to a decoupling of the governing system of equations which in turn effects an irreducible factorization of the ninth-degree characteristic polynomial into a product of first, third, and fifth-degree polynomials. Regular and singular perturbation methods are then used to deduce asymptotic expansions of the characteristic roots which reflect the low and the high frequency dependence of the frequency on the wave number. Dyadic analysis of the spacial spectral equations brings the general solution into its canonical dyadic form. Extensive asymptotic analysis of the quadratic forms that define the kinetic, the strain, the magnetic and the dissipation energy provides the rate of dissipation of these energies as the time variable approaches infinity. The rate of dissipation obtained coincides with the corresponding rate for thermoelastic waves. Therefore, a similarity between the dissipative effects of thermal coupling and that of finite conductivity upon the propagation of elastic waves is established.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call