Abstract

We characterize numerically the dominant dynamical regimes in a superfluid ultracold fermionic Josephson junction. Beyond the coherent Josephson plasma regime, we discuss the onset and physical mechanism of dissipation due to the superflow exceeding a characteristic speed, and provide clear evidence distinguishing its physical mechanism across the weakly and strongly interacting limits, despite qualitative dynamics of global characteristics being only weakly sensitive to the operating dissipative mechanism. Specifically, dissipation in the strongly interacting regime occurs through the phase-slippage process, caused by the emission and propagation of quantum vortices, and sound waves-similar to the Bose-Einstein condensation limit. Instead, in the weak interaction limit, the main dissipative channel arises through the pair-breaking mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call