Abstract
The mixed convection flow in a plane channel with adiabatic boundaries is examined. The boundaries have an externally prescribed relative velocity defining a Couette-like setup for the flow. A stationary flow regime is maintained with a constant velocity difference between the boundaries, considered as thermally insulated. The effect of viscous dissipation induces a heat source in the flow domain and, hence, a temperature gradient. The nonuniform temperature distribution causes, in turn, a buoyancy force and a combined forced and free flow regime. Dual mixed convection flows occur for a given velocity difference. Their structure is analysed where, in general, only one branch of the dual flows is compatible with the Oberbeck–Boussinesq approximation, for realistic values of the Gebhart number. A linear stability analysis of the basic stationary flows with viscous dissipation is carried out. The stability eigenvalue problem is solved numerically, leading to the determination of the neutral stability curves and the critical values of the Péclet number, for different Gebhart numbers. An analytical asymptotic solution in the special case of perturbations with infinite wavelength is also developed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.