Abstract

We investigate the dynamics of a spinor Bose-Einstein condensate inside an optical cavity, driven transversely by a laser with a controllable polarization angle. We focus on a two-component Dicke model with complex light-matter couplings, in the presence of photon losses. We calculate the steady-state phase diagram and find dynamical instabilities in the form of limit cycles, heralded by the presence of exceptional points and level attraction. We show that the instabilities are induced by dissipative processes that generate nonreciprocal couplings between the two collective spins. Our predictions can be readily tested in state-of-the-art experiments and open up the study of nonreciprocal many-body dynamics out of equilibrium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call