Abstract

This work is the first report on the dissipation and final residue of cloransulam-methyl on soybean plant at field conditions. A fast, simple, and reliable residue analytical method for determination of cloransulam-methyl in soybean matrices and soil was developed based on quick, easy, cheap, effective, rugged, and safe (QuEChERS) sample preparation and liquid chromatography-tandem mass spectrometry (LC-MS/MS) detection. The average recoveries of cloransulam-methyl in soybean matrices and soil ranged from 80 to 105%, with RSDs between 3-11%. The limit of detection (LOD) was 0.001 mg kg(-1) for soybean grain, plant, and soil and was 0.005 mg kg(-1) for soybean straw. This method was then used to characterize dissipation of cloransulam-methyl in soybeans and soil from three locations in China for the first time. Cloransulam-methyl dissipated quickly in soybean plant with half-lives (T1/2) of 0.21-0.56 days. The dissipation dynamic in soil was characterized using both first-order kinetics model and two-compartment model, and the half-lives were similar, ranging from 0.44 to 5.53 days at three experimental sites in 2012 and 2013. The final residue data showed a very low level of cloransulam-methyl in soil (≤0.026 mg kg(-1)), soybean grain (≤0.001 mg kg(-1)), and straw (≤0.005 mg kg(-1)) samples at harvest time. With the faster and simple analytical method on soybean and soil, rapid dissipation of cloransulam-methyl was observed at three geospatial locations in China, and the terminal residue levels were negligible, so mammalian ingestion exposure is minimal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call