Abstract

We shall revisit the conventional adiabatic or Markov approximation, which—in contrast to the semiclassical case—does not preserve the positive-definite character of the corresponding density matrix, thus leading to highly non-physical results. To overcome this serious limitation, originally pointed out and partially solved by Davies and co-workers almost three decades ago, we shall propose an alternative more general adiabatic procedure, which (i) is physically justified under the same validity restrictions of the conventional Markov approach, (ii) in the semiclassical limit reduces to the standard Fermi's golden rule and (iii) describes a genuine Lindblad evolution, thus providing a reliable/robust treatment of energy-dissipation and dephasing processes in electronic quantum devices. Unlike standard master-equation formulations, the dependence of our approximation on the specific choice of the subsystem (that includes the common partial trace reduction) does not threaten positivity, and quantum scattering rates are well defined even in the case the subsystem is infinitely extended/has a continuous spectrum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call