Abstract

We measured potential rates of bacterial dissimilatory reduction of SeO(4) to Se in a diversity of sediment types, with salinities ranging from freshwater (salinity = 1 g/liter) to hypersaline (salinity = 320 g/liter and with pH values ranging from 7.1 to 9.8. Significant biological selenate reduction occurred in all samples with salinities from 1 to 250 g/liter but not in samples with a salinity of 320 g/liter. Potential selenate reduction rates (25 nmol of SeO(4) per ml of sediment added with isotope) ranged from 0.07 to 22 mumol of SeO(4) reduced liter h. Activity followed Michaelis-Menten kinetics in relation to SeO(4) concentration (K(m) of selenate = 7.9 to 720 muM). There was no linear correlation between potential rates of SeO(4) reduction and salinity, pH, concentrations of total Se, porosity, or organic carbon in the sediments. However, potential selenate reduction was correlated with apparent K(m) for selenate and with potential rates of denitrification (r = 0.92 and 0.81, respectively). NO(3), NO(2), MoO(4), and WO(4) inhibited selenate reduction activity to different extents in sediments from both Hunter Drain and Massie Slough, Nev. Sulfate partially inhibited activity in sediment from freshwater (salinity = 1 g/liter) Massie Slough samples but not from the saline (salinity = 60 g/liter) Hunter Drain samples. We conclude that dissimilatory selenate reduction in sediments is widespread in nature. In addition, in situ selenate reduction is a first-order reaction, because the ambient concentrations of selenium oxyanions in the sediments were orders of magnitude less than their K(m)s.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call