Abstract
The abundance, community composition and activity of key nitrogen (N)-cycling functional guilds were monitored at a site where coniferous Cunninghamia lanceolate and broadleaved Mytilaria laosensis were planted in 1993. Leaf cellulose, litter C/N ratio, leaf dry matter content, soil inorganic N content were significantly higher under C. lanceolata, while specific leaf area, litter production, litter magnesium, soil C and soil C/NO3− ratio were higher under M. laosensis. The 15N tracing experiment together with quantitative PCR revealed that autotrophic nitrification rates, as well as the abundances of ammonia-oxidizing archaea and comammox Nitrospira were significantly higher under C. lanceolate than M. laosensis. However, M. laosensis exhibited substantially higher nitrate retention capacity via dissimilatory nitrate reduction to ammonium (DNRA), accompanied by a significantly higher abundance of nrfA gene than C. lanceolate. The Illumina sequencing indicated that tree species markedly affected soil bacterial community composition regardless of the soil layers. Redundancy analysis suggested that litter C/N ratio was the most influential factor explaining functional gene abundances and bacterial communities. Taken together, our findings showed that M. laosensis improved soil N retention capacity mainly through inhibiting autotrophic nitrification while enhancing DNRA activity. This study highlights the importance of tree species identity in influencing the microbially-mediated N cycling and bacterial community composition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.