Abstract
The application of sintered calcium phosphate dental inserts in the central part of tooth cavities can reduce amount of embedded dental composite and polymerization shrinkage of final dental fillings. The aim of this study was to analyze comparatively physico-chemical and mechanical properties of dental inserts and shear bond strength (SBS) between three dissimilar hydroxyapatite-based dental inserts and different restorative materials, after application of different clinical protocols. Starting from two different hydroxyapatite nano powders and nanostructured stabilized zirconia (YSZ), monophasic two-step sintered dense HAp inserts (TSSHAp), biphasic single-step sintered controlled porous inserts (HAp/TCp), and single-step sintered reinforced HAp/YSZ inserts were processed and characterized. Obvious differences in the microstructure of inserts surface were visualized after etching with 37% phosphoric acid. Fracture toughness of sintered inserts was ranged between 1.01 and 1.85 MPam1/2 (maximum value in the case of HAp/YSZ), while hardness values were in the range of 3.71-5.22 GPa (maximum value in the case of TSSHAp). Acid etching before application improved SBS between inserts and Maxcem compared to direct cement application. TSSHAp and HAP/TCp inserts showed comparable and relatively high SBS values, certainly higher compared to HAp/YSZ inserts. Slightly higher SBS values were measured in the case of TSSHAp insert group, and the highest mean SBS value of 18.51 MPa was determined between TSSHAp inserts and Filtek Z250_SBU following the "self-etch" protocol.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of biomedical materials research. Part B, Applied biomaterials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.