Abstract

Typically in flaw evaluation procedures, idealized crack shapes are assumed for both subcritical and critical crack analyses. Past NRC-sponsored research have developed estimation schemes for predicting the load-carrying capacity of idealized cracks in nuclear grade piping and similar metal welds at the operating conditions of nuclear power reactors. However, recent analyses have shown that growth of primary water stress corrosion cracks (PWSCC) in dissimilar metal (DM) welds is not ideal; in fact, very unusual complex crack shapes may form, i.e., a very long surface crack that has a finite length through-wall crack in the same plane. Even though some experimental data on base metals exists to demonstrate that complex shaped cracks in high toughness materials fail under limit load conditions, other experiments demonstrate that the tearing resistance is significantly reduced. At this point, no experimental data exists for complex cracks in DM welds. In addition, it is unclear whether the idealized estimation schemes developed can be used to predict the load-carrying capacity of these complex-shaped cracks, even though they have been used in past analyses by the nuclear industry. Finally, it is unclear what material strength data should be used to assess the stability of a crack in a DM weld. The NRC Office of Nuclear Regulatory Research, with their contractor Battelle Memorial Institute, has concluded an experimental program to confirm the stability behavior of complex shaped circumferential cracks in DM welds. A combination of full-scale pipe experiments and a variety of laboratory experiments were conducted. A description of the pipe test experimental results is given in a companion paper. This paper describes the ongoing analyses of those results, and the prediction of the load-carrying capacity of the circumferential cracked pipe using a variety of J-estimation scheme procedures. Discussions include the effects of constraint, appropriate base metal material properties, effects of crack location relative to the dissimilar base metals, and the limitations of the currently available J-estimation scheme procedures. This paper concludes with plans for further development of J-estimation scheme procedures for circumferential complex cracks in DM welds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call