Abstract

Abstract A post-weld heat treatment consisting of solution treatment and subsequent aging (STA) is widely applied to aluminum joints fabricated by friction stir welding (FSW) to improve the mechanical strength via precipitation hardening. In this study, aerospace aluminum alloys of AA2198 and AA7475 were FSWed in similar and dissimilar states. Differential scanning calorimetry (DSC) was used to trace the precipitation strengthening during the aging of welded specimens. The post-weld aging procedures were designed based on the DSC outputs. Accordingly, welded sheets were solution treated at 480 ℃ and 540 ℃ for 10–90 min, air-cooled and aged at 155 ℃ and 170 ℃ for 2–40 h, respectively. Optical micrographs revealed that due to the faster kinetics of the recrystallization, higher homogenizing temperature led to nucleation of the finer grains from highly stress localized points in the stir zone (SZ) and TMAZ by faster growth rate. Higher time and temperature of the solution-treatment eventuated in accumulation of Cu-enriched intermetallic phases in the grain boundaries at SZ and TMAZ of AA7475, attenuation of the grains adhesion and failure of the sample. Hardness test results showed that the hardness increased in AA7475 alloy while decreasing in AA2198 alloy in the as-welded state. Post weld heat treatment enhanced the hardness in AA2198 and reduced it in AA7475. However, it had no significant effect on the grain size.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.