Abstract

Central nervous system (CNS) microglia (MG) and peripheral tissue macrophages (MO) remove pathogens by phagocytosis. Zymosan, a model yeast pathogen, is a beta-glucan rich particle that readily activates the complement system and then becomes C3bi-opsonized (op). Complement receptor-3 (CR3) has initially been implicated in mediating the phagocytosis of both C3bi-op and non-opsonized (nop) zymosan by MO through C3bi and beta-glucan binding sites, respectively. Later, the role of CR3 as a phagocytic beta-glucan receptor has been questioned and the supremacy of beta-glucan receptor Dectin-1 advocated. We compare here between primary mouse CNS MG and peripheral tissue MO with respect to CR3 and Dectin-1 mediated phagocytosis of C3bi-op and nop zymosan. We report that MG and MO display similar as well as dissimilar functional properties in this respect. Although CR3 and Dectin-1 function both as beta-glucan/non-opsonic receptors in MG during nop zymosan phagocytosis, Dectin-1, but not CR3, does so in MO. CR3 functions also as a C3bi/opsonic receptor in MG and MO during C3bi-op zymosan phagocytosis, leading to phagocytosis which is more efficient than that of nop zymosan. Dectin-1 contributes, albeit less than CR3, to phagocytosis of C3bi-op zymosan in MG and further less in MO, suggesting that C3bi-opsonization does not block all beta-glucan sites on zymosan from binding Dectin-1 on phagocytes. Thus, altogether CR3 and Dectin-1 contribute both to phagocytosis of nop and C3bi-op zymosan in MG, whereas MO switch from CR3-independent/Dectin-1-dependent phagocytosis of nop zymosan to phagocytosis of C3bi-op zymosan where CR3 dominates over Dectin-1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.