Abstract

The dissemination of catabolic plasmids was compared to bioaugmentation by strain inoculation in microcosm experiments. When Rhodococcus erythropolis strain T902, bearing a plasmid with trichloroethene and isopropylbenzene degradation pathways, was used as the inoculum, no transconjugant was isolated but the strain remained in the soil. This plasmid had a narrow host range. Pseudomonas putida strain C8S3 was used as the inoculum in a second approach. It bore a broad host range conjugative plasmid harboring a natural transposon, RP4::Tn4371, responsible for biphenyl and 4-chlorobiphenyl degradation pathways. The inoculating population slowly decreased from its original level (10(6) colony-forming units [CFU]/g of dry soil) to approx 3 x 10(2) CFU/g of dry soil after 3 wk. Transconjugant populations degrading biphenyl appeared in constant humidity soil (up to 2 x 10(3) CFU/g) and desiccating soil (up to 10(4) CFU/g). The feasibility of plasmid dissemination as a bioaugmentation technique was demonstrated in desiccating soils. The ecologic significance of desiccation in bioaugmentation was demonstrated: it upset the microbial ecology and the development of transconjugants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.