Abstract
BackgroundAdvanced-stage neuroblastoma patients require multiagent chemotherapy. Intratumoral implantation of vincristine-loaded silk gel uses local diffusion to decrease orthotopic neuroblastoma tumor growth in mice. We hypothesize that injecting vincristine-loaded silk gel into 8 locations within the tumor, instead of only centrally, decreases the diffusion distance and improves tumor growth suppression. MethodsHuman neuroblastoma cells, KELLY, were injected into mouse adrenal glands to create orthotopic tumors. After the tumors reached 100 mm3 by ultrasound, silk gels loaded with 50 µg vincristine were injected centrally or in 8 areas throughout the tumor. Drug-release profile was measured in vitro. Endpoints were tumor size >1,000 mm3 and histologic examination. ResultsVincristine-loaded silk gels suppressed tumor growth up to an inflection point (458.7 ± 234.4 mm3 for central, 514.3 ± 165.8 mm3 for 8-point injection) before tumor growth accelerated >200 mm3 over 3 days. The time to inflection point was 6.6 days for central, 13.3 days for 8-point injection (P < .05). Using the sphere volume equation to approximate tumor volume, splitting the volume into 1/8 decreased the diffusion radius by 1/2. Histologic examination confirmed tumor necrosis adjacent to vincristine-loaded silk gel. ConclusionInjecting vincristine-loaded sustained release silk gel at 8 separate locations halved the diffusion distance and doubled the time for the tumor to reach the growth inflexion point.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.