Abstract

Phosphite, a reduced form of phosphate, inhibits the growth and even has toxic effect on plants. To learn more about the mechanism of alfalfa responses to phosphite, the morphological and physiological characteristics, and the metabolites and transcript levels were comprehensively analyzed following the exposure of alfalfa seedlings to phosphite and phosphate under greenhouse conditions. The results showed that phosphite inhibited seedling growth and photosynthesis. However, the absorption efficiency of phosphite was higher than that of phosphate in roots, which was supported by increased total phosphorus concentration of 16.29% and 52.30% on days 8 and 12. Moreover, phosphite stress affected the synthesis of lipids and carbohydrates, which were reflected in enhanced glycolipid and sulfolipid in roots and amylose in shoots. Phosphite stress resulted in a decrease in indole acetic acid (IAA) in the whole plant and zeatin in the shoots, which could enable alfalfa to adapt to the phosphite environment. Some genes involved in phosphate starvation response included SPX, phosphate response regulator2, and inorganic phosphate transporter 1–4 (PHT1;4) in roots were affected by phosphite stress. In addition, some genes that are involved in stress responses and DNA repair were induced by phosphite stress. These observations together suggest that alfalfa responds to phosphite stress by inhibiting growth, regulating the genes induced by phosphate starvation, improving oxidative protection, promoting DNA repair, and adjusting the IAA and zeatin signaling transductions. Our findings provide novel insights into the molecular response to phosphite stress in alfalfa.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call