Abstract

The novel type, fungus specific protein phosphatase Z1 of the opportunistic pathogen, Candida albicans (CaPpz1) has several important physiological roles. It consists of a conserved C-terminal catalytic domain and a variable, intrinsically disordered, N-terminal regulatory domain. To test the function of these domains we modified the structure of CaPpz1 by in vitro mutagenesis. The two main domains were separated, four potential protein binding regions were deleted, and the myristoylation site as well as the active site of the enzyme was crippled by point mutations G2A and R262L, respectively. The in vitro phosphatase activity assay of the bacterially expressed recombinant proteins indicated that the N-terminal domain was inactive, while the C-terminal domain became highly active against myosin light chain substrate. The deletion of the N-terminal 1–16 amino acids and the G2A mutation significantly decreased the specific activity of the enzyme. Complementation of the ppz1 Saccharomyces cerevisiae deletion mutant strain with the different CaPpz1 forms demonstrated that the scission of the main domains, the two point mutations and the N-terminal 1–16 deletion rendered the phosphatase incompetent in the in vivo assays of LiCl tolerance and caffeine sensitivity. Thus our results confirmed the functional role of the N-terminal domain and highlighted the significance of the very N-terminal part of the protein in the regulation of CaPpz1.

Highlights

  • Candida albicans is an important opportunistic human pathogen that persists in the microbiome of healthy individuals causing slight candidiasis with hardly any serious symptoms under normal conditions [1]

  • From our structure-function study we conclude that both the enzyme activity of the C-terminal domain and the proper localization of the enzyme by its N-terminal domain are essential for the physiological functions of the CaPpz1 phosphatase

  • The first 16 amino acid residues, including the Gly2 myristoylation site, of the CaPpz1 phosphatase are especially important as the deletion of this region or the G2A mutation significantly decreased the specific activity of the enzyme in vitro and diminished the ability of the mutant proteins to complement the caffeine sensitivity and salt tolerance of the ppz1 S. cerevisiae deletion mutant in vivo

Read more

Summary

Introduction

Candida albicans is an important opportunistic human pathogen that persists in the microbiome of healthy individuals causing slight candidiasis with hardly any serious symptoms under normal conditions [1]. In immune compromised patients, like the ones suffering from HIV infection or from autoimmune diseases as well as in immune suppressed recipients of organ transplants, the same fungal species can cause life threatening invasive infection. Additional predisposing diseases and conditions like cancer, diabetes, pregnancy or old age as well as steroid or antibiotics treatments of patients increase the prevalence of candidaemia. C. albicans is one of the most common causes of nosocomial. N-terminal domain of CaPpz decision to publish, or preparation of the manuscript

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call