Abstract

BackgroundMost agronomical traits of crop species are complex traits controlled by multiple genes and affected by environmental factors. While considerable efforts have been made to fine-map and clone major quantitative trait loci (QTLs) for yield-related traits in rice, it is not until recently that the attention has been paid to minor QTLs. Following previous dissection of QTLs for grain weight and grain size in a 12-Mb interval on the long arm of chromosome 1 in rice, this study targeted at one putative QTL region for a more precise mapping and for analyzing the genotype-by-environment interaction of minor QTLs.ResultsFour BC2F10 plants of the indica rice cross ZS97///ZS97//ZS97/MY46 were selected. They carried overlapped heterozygous segments that jointly covered the entire putative region for qTGW1.1 detected previously. Four sets of near isogenic lines (NILs) were developed from selfing progenies of the four plants. Each NIL set consisted of 32 ZS97 homozygous lines and 32 MY46 homozygous lines that differed in the corresponding heterozygous region. They were grown in two locations having distinct ecological conditions and measured for 1000-grain weight, grain length and grain width. Two QTLs were separated in an 835.2-kb interval flanked by DNA markers Wn28447 and RM11569. They both showed consistent effects across the two environments. The qTGW1.1a located within the 120.4-kb interval Wn28447 − RM11543 significantly affect all the three traits with the enhancing allele derived from ZS97, showing a stronger influence on grain weight than on grain length and width. The qTGW1.1b located in the 521.8-kb interval RM11554 − RM11569 significantly affect grain weight and length with the enhancing allele derived from MY46, having a stronger influence on grain length than on grain weight. Consistent performance of the two QTLs was confirmed in a validation experiment using five NIL-F2 populations segregated for either qTGW1.1a or qTGW1.1b.ConclusionSeparation of closely-linked QTLs having small effects is achievable in the absence of major-QTL segregation. Minor QTLs for complex traits could act consistently in diverse environments, offering the potential of pyramiding beneficial alleles of multiple minor QTLs through marker-assisted selection.Electronic supplementary materialThe online version of this article (doi:10.1186/s12863-016-0410-5) contains supplementary material, which is available to authorized users.

Highlights

  • Most agronomical traits of crop species are complex traits controlled by multiple genes and affected by environmental factors

  • The difference in each population was much more distinct between the two locations than among the 64 rice lines. These results indicate that genes for grain weight and grain size that were not segregated in these populations had a strong response to the environmental variations between the two locations

  • No significant variation was detected for GE interactions, indicating that genotypic variation in the target region had consistent effects on 1000-grain weight (TGW), grain length (GL) and grain weight (GW) in the two trials which were conducted under distinct ecological conditions

Read more

Summary

Introduction

Most agronomical traits of crop species are complex traits controlled by multiple genes and affected by environmental factors. While considerable efforts have been made to fine-map and clone major quantitative trait loci (QTLs) for yield-related traits in rice, it is not until recently that the attention has been paid to minor QTLs. Following previous dissection of QTLs for grain weight and grain size in a 12-Mb interval on the long arm of chromosome 1 in rice, this study targeted at one putative QTL region for a more precise mapping and for analyzing the genotype-by-environment interaction of minor QTLs. Most agronomical traits of crop species are complex traits controlled by multiple genes and heavily influenced by environmental factors. A considerable number of QTLs having large effects on heading date, grain number or grain weight were cloned [1,2,3]. It was shown that a minor QTL could have a consistent performance across different genetic backgrounds and environmental conditions [6]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call