Abstract

Characteristic for cruciferous plants is the synthesis of a complex array of defence-related indolic compounds. In Arabidopsis, these include indol-3-ylmethyl glucosinolates (IMGs), as well as stress-inducible indole-3-carbaldehyde (ICHO)/indole-3-carboxylic acid (ICOOH) derivatives and camalexin. Key enzymes in the biosynthesis of the inducible metabolites are the cytochrome P450 enzymes CYP71A12, CYP71A13 and CYP71B6 and Arabidopsis Aldehyde Oxidase 1 (AAO1). Multiple mutants in the corresponding genes were generated and their metabolic phenotypes were comprehensively analysed in untreated, UV exposed and silver nitrate-treated leaves. Most strikingly, ICOOH and ICHO derivatives synthesized in response to UV exposure were not metabolically related. While ICHO concentrations correlated with IMGs, ICOOH derivatives were anti-correlated with IMGs and partially dependent on CYP71B6. The AAO1 genotype was shown to not only be important for ICHO metabolism but also for the accumulation of 4-pyridoxic acid, suggesting a dual role of AAO1 in vitamin B6 metabolism and IMG degradation in Arabidopsis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.