Abstract

Alpha t alpha is a de novo designed 38-residue peptide [Fezoui et al. (1995) Protein Sci. 4, 286-295] that adopts a helical hairpin conformation in solution [Fezoui et al. (1994) Proc. Natl. Acad. Sci. U.S.A. 91, 3675-3679; Fezoui et al. (1997) Protein Sci. 6, 1869-1877]. Since alpha t alpha was developed as a model system for protein folding at the stage where secondary structures interact and become mutually stabilizing, it is of interest to investigate the increase in stability that occurs with helix association. alpha t alpha was dissected into its component helices and the relative stabilities of the individual helices and the parent molecule were assessed. The Delta G0 of unfolding of alpha t alpha measured by guanidine hydrochloride denaturation was determined to be 3.4 kcal/mol. The equilibrium constant for folding of alpha t alpha was estimated from the Delta G0 as 338 and from hydrogen exchange measurements as 259. The stability of the helices in intact alpha t alpha over the individual helices increased by a factor of at least 37 based on amide proton exchange measurements. Sedimentation equilibrium studies showed very little association of the peptides to form either homo- or heterodimers, suggesting that helix association is stabilized by the high effective concentration of the helices caused by the presence of the connecting turn. The effects of salt and pH on the helicity of the component peptides are largely reflected in the intact molecule, implying that short-range interactions still make important contributions to the conformation of the intact molecule even though significant stabilization is caused by helix association.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call