Abstract

Using a new Arabidopsis (Arabidopsis thaliana) mutant (Atnrt2.1-nrt2.2) we confirm that concomitant disruption of NRT2.1 and NRT2.2 reduces inducible high-affinity transport system (IHATS) by up to 80%, whereas the constitutive high-affinity transport system (CHATS) was reduced by 30%. Nitrate influx via the low-affinity transport system (LATS) was unaffected. Shoot-to-root ratios were significantly reduced compared to wild-type plants, the major effect being upon shoot growth. In another mutant uniquely disrupted in NRT2.1 (Atnrt2.1), IHATS was reduced by up to 72%, whereas neither the CHATS nor the LATS fluxes were significantly reduced. Disruption of NRT2.1 in Atnrt2.1 caused a consistent and significant reduction of shoot-to-root ratios. IHATS influx and shoot-to-root ratios were restored to wild-type values when Atnrt2.1-nrt2.2 was transformed with a NRT2.1 cDNA isolated from Arabidopsis. Disruption of NRT2.2 in Atnrt2.2 reduced IHATS by 19% and this reduction was statistically significant only at 6 h after resupply of nitrate to nitrogen-deprived plants. Atnrt2.2 showed no significant reduction of CHATS, LATS, or shoot-to-root ratios. These results define NRT2.1 as the major contributor to IHATS. Nevertheless, when maintained on agar containing 0.25 mm KNO(3) as the sole nitrogen source, Atnrt2.1-nrt2.2 consistently exhibited greater stress and growth reduction than Atnrt2.1. Evidence from real-time PCR revealed that NRT2.2 transcript abundance was increased almost 3-fold in Atnrt2.1. These findings suggest that NRT2.2 normally makes only a small contribution to IHATS, but when NRT2.1 is lost, this contribution increases, resulting in a partial compensation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call