Abstract

Vaccination with the merozoite surface protein 3 (MSP3) of Plasmodium falciparum protects against infection in primates and is under development as a vaccine against malaria in humans. MSP3 is secreted and associates with the parasite membrane but lacks a predicted transmembrane domain or a glycosylphosphatidylinositol anchor. Its role in the invasion of red blood cells is unclear. To study MSP3, we produced recombinant full-length protein and found by size exclusion chromatography that the apparent size of MSP3 was much larger than predicted from its sequence. To investigate this, we used several biophysical techniques to characterize the full-length molecule and four smaller polypeptides. The MSP3 polypeptides contain a large amount of alpha-helix and random coil secondary structure as measured by circular dichroism spectroscopy. The full-length MSP3 forms highly elongated dimers and tetramers as revealed by chemical cross-linking and analytical ultracentrifugation. The dimer is formed through a leucine zipper-like domain located between residues 306 and 362 at the C terminus. Two dimers interact through their C termini to form a tetramer with an apparent association constant of 3 mum. Sedimentation velocity experiments determined that the MSP3 molecules are highly extended in solution (some with f/f(0) > 2). These data, in light of the recent discoveries of three other Plasmodium proteins containing very similar C-terminal sequences, suggest that the members of this newly identified family may adopt highly extended and oligomeric novel structures capable of interacting with a red blood cell at relatively long distances.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.