Abstract

Recent studies have demonstrated that calcium-dependent protein kinases (CDPKs) are used by calcium to regulate a variety of biological processes in the malaria parasite Plasmodium. CDPK4 has emerged as an important enzyme for parasite development, because its gene disruption in rodent parasite Plasmodium berghei causes major defects in sexual differentiation of the parasite ( Billker, O., Dechamps, S., Tewari, R., Wenig, G., Franke-Fayard, B., and Brinkmann, V. (2004) Cell 117, 503-514 ). Despite these findings, it is not very clear how PfCDPK4 or any other PfCDPK is regulated by calcium at the molecular level. We report the biochemical characterization and elucidation of molecular mechanisms involved in the regulation of PfCDPK4. PfCDPK4 was detected on gametocyte periphery, and its activity in the parasite was regulated by phospholipase C. Even though the Junction Domain (JD) of PfCDPK4 shares moderate sequence homology with that of the plant CDPKs, it plays a pivotal role in PfCDPK4 regulation as previously reported for some plant CDPKs. The regions of the J-domain involved in interaction with both the kinase domain and the calmodulin-like domain were mapped. We propose a model for PfCDPK regulation by calcium, which may also prove useful for design of inhibitors against PfCDPK4 and other members of the PfCDPK family.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.