Abstract

In the sexual reproduction of the green alga Closterium ehrenbergii, two sexually competent cells that are morphologically indistinguishable from the vegetative cells first come close to each other to form a sexually interacting pair. Each then divides into two gametangial cells. Isogamous conjugation occurs between nonsister gametangial cells of the two resulting pairs. With unusual selfing clones derived from a certain cross of heterothallic strains, we dissected apart a pair of gametangial cells that had already been united together by a delicate transparent tube, into which each gametangial cell was going to develop its conjugation papilla. In spite of such a degree of differentiation, when each was cultured in fresh medium, individual gametangial cells could dedifferentiate into vegetative cells and form subclones. By crossing such subclones with standard stable heterothallic mating-type strains, we show that each selfing clone of this alga actually produces both stable mt+ and stable mt- cells, in addition to unstable mt- cells with selfing potency, during its mitotic vegetative growth. Although the selfing in C. ehrenbergii studied here differs in certain points from true homothallism, the results of the present study provide insight into how homothallism might have evolved from heterothallism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.