Abstract

Continuous turnover of intracellular components by autophagy is necessary to preserve cellular homeostasis in all tissues. Despite recent advances in identifying autophagy-related genes and understanding the functions of autophagy in developmental and pathological conditions, so far, the role of autophagy in platelet, a specific anucleate cell type, is poorly understood. In this study, we showed that human platelets express the autophagy-related proteins ATG5, ATG7, and LC3. The same as in nucleated mammalian cells, autophagy was stimulated by cell starvation or the MTOR inhibitor rapamycin in a phosphatidylinositol 3-kinase (PtdIns3K)-dependent manner. Disruption of autophagic flux led to impairment of platelet aggregation and adhesion. Furthermore, Becn1 heterozygous knockout mice displayed a prolonged bleeding time and reduced platelet aggregation. These results suggest a potential role of autophagy in the regulation of platelet function, and imply that gene transcription may not be an essential prerequisite for adaptive autophagy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call