Abstract

Malting and brewing are major uses of barley (Hordeum vulgare L.) worldwide, utilizing 30–40% of the crop each year. A set of complex traits determines the quality of malted barley and its subsequent use for beer. Molecular genetics technology has increased our understanding of genetic control of the many malting and brewing quality traits, most of which are quantitatively inherited. The objective of this study was to further dissect and evaluate a known major malting quality quantitative trait locus (QTL) region of about 28 cM on chromosome 1 (7H). Molecular marker-assisted backcrossing was used to develop 39 isolines originating from a ‘Steptoe’ / ‘Morex’ cross. Morex, a 6–row malting type, was the donor parent and Steptoe, a 6–row feed type, was the recurrent parent. The isolines and parents were grown in four environments, and the grain was micro-malted and analyzed for malting quality traits. The effect of each Morex chromosome segment in the QTL target region was determined by composite interval mapping (CIM) and confirmed and refined by multiple interval mapping (MIM). One QTL was resolved for malt extract content, and two QTLs each were resolved for α-amylase activity, diastatic power, and malt β-glucan content. One additional putative malt extract QTL was detected at the plus border of the target region by CIM, but not confirmed by MIM. All QTLs were resolved to intervals of 2.0 to 6.4 cM by CIM, and to intervals of 2.0 cM or less by MIM. These results should facilitate marker-assisted selection in breeding improved malting barley cultivars.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call