Abstract

The Drosophila melanogaster eye disc is a powerful system that can be used to study many different biological processes. It contains approximately 800 separate eye units, termed ommatidia. Each ommatidium contains eight neuronal photoreceptors that develop from undifferentiated cells following the passage of the morphogenetic furrow in the third larval instar. Following the sequential differentiation of the photoreceptors, non-neuronal cells develop, including cone and pigment cells, along with mechanosensory bristle cells. Final differentiation processes, including the structured arrangement of all the ommatidial cell types, programmed cell death of undifferentiated cell types and rhodopsin expression, occurs through the pupal phase. This technique focuses on manipulating the pupal eye disc, providing insight and instruction on how to dissect the eye disc during the pupal phase, which is inherently more difficult to perform than the commonly dissected third instar eye disc. This technique also provides details on immunostaining to allow the visualization of various proteins and other cell components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.