Abstract

In response to events such as receptor binding and endocytic triggers, viruses undergo large-scale, dynamic conformational changes necessary for cell entry and genome delivery. In later stages of the infectious cycle, replication machinery must read and synthesize nucleic acid strands to generate new copies of genetic material, and structural proteins must assemble and package the appropriate contents in order to produce new infectious particles. Structural elucidation of these events is key to understanding them and their inhibition by antiviral agents such as neutralizing antibodies and drugs. Electron microscopy is a versatile technique that offers the ability to resolve three-dimensional structures of individual viral proteins and whole virions in multiple functional states, even in cells at different stages of infection (Fig 1). Here we focus on the use of transmission electron microscopy of frozen-hydrated specimens, i.e., cryo-electron microscopy (cryo-EM). A major advantage of cryo-EM over other structural approaches is that samples of a broad range of sizes can be imaged under near-physiological conditions with native hydration intact. This approach does not require the specimen to be fixed, stained, or coaxed into a crystalline lattice. This versatility has enabled cryo-EM to expand the envelope of structural virology and opened new avenues for understanding the molecular and cellular processes of virus infection and pathogenesis. Fig 1 Cryo-electron microscopy (cryo-EM) enables one to gain insight into viruses over many levels of structural hierarchy, ranging from determination of near-atomic resolution structures of subunits and symmetrical virus assemblies to ultrastructural analysis ... In this micro-review, we examine general approaches and recent applications of cryo-EM to virology. The reader is referred to a number of excellent reviews for more in-depth discussion of current methodology (e.g., [1,2]). Electron microscopy and structural virology have a long, shared history dating to the first images of bacteriophages gathered using some of the earliest electron microscopes [3]. As the technique of cryogenically preserving unfixed samples was being developed, again, viruses were among the first test subjects that helped to demonstrate the utility of cryo-EM for characterizing structure of large biological assemblies [4–6].

Highlights

  • This approach does not require the specimen to be fixed, stained, or coaxed into a crystalline lattice. This versatility has enabled cryo-electron microscopy (cryo-EM) to expand the envelope of structural virology and opened new avenues for understanding the molecular and cellular processes of virus infection and pathogenesis. In this micro-review, we examine general approaches and recent applications of cryo-EM to virology

  • For surface and capsid proteins that are targets for neutralizing antibodies, by enabling Fab-virus complexes to be studied in a fairly straightforward manner, cryo-EM analysis is proving exceptionally useful for discerning the full epitopes that are recognized by antibodies, including, in some cases, portions of glycan in addition to protein features (e.g., [19,20,21])

  • Tomography provides a means of gathering three-dimensional structural information by tilting a specimen to image a field of view over a range of angles [2]. This imaging scheme is subject to some basic limitations that result in reduced resolution relative to single-particle cryo-EM

Read more

Summary

Dissecting Virus Infectious Cycles by CryoElectron Microscopy

In response to events such as receptor binding and endocytic triggers, viruses undergo largescale, dynamic conformational changes necessary for cell entry and genome delivery. In later stages of the infectious cycle, replication machinery must read and synthesize nucleic acid strands to generate new copies of genetic material, and structural proteins must assemble and package the appropriate contents in order to produce new infectious particles. Structural elucidation of these events is key to understanding them and their inhibition by antiviral agents such as neutralizing antibodies and drugs.

OPEN ACCESS
Electron Tomography of Complex Specimens
Imaging Dynamic Processes
Towards the Interface of Structural Virology and Cell Biology

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.