Abstract

Abstract The Malanjkhand granodiorite in the Bastar Craton hosts a major copper (+ molybdenum) deposit. It represents a Precambrian granite–ore system lacking in key morphological features of porphyry-type deposits but is comparable as a chemical package with a distinct mode of evolution of the magmatic-hydrothermal system. Mineral chemistry of biotite and apatite along with bulk geochemical data constrain critical parameters such as initial water and halogen contents of the magma. Evolution of the magmatic-hydrothermal fluid has been envisaged with available thermobarometric data. A quantitative ore genetic model in terms of efficiency of removal of metals and resultant mineralization in terms of quantity of metals has been attempted for the Malanjkhand deposit. The Eastern Dharwar Craton witnessed prolific granitic activities in multiple phases during the Late Archean and are spatially close to auriferous schist belts. Against a widely held view of a single metamorphogenic origin of metal and ore fluid, a granite–gold connection can be visualized for the auriferous schist belts of the Eastern Dharwar Craton through comparison of fluid characteristics in the granitoid and ore regimes and mineral chemical constraints. Although a quantitative genetic link between the granitoid and gold would need more data, a magmatic component of the ore fluid could be established based on the available information.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.