Abstract

Dispersing inorganic nanoparticles in aqueous solutions is a key requirement for a great variety of products and processes, including carriers in drug delivery or fillers in polymers. To be highly functional in the final product, inorganic particles are required to be finely dispersed in nanoscale. In this study, silica was selected as a representative inorganic particle. Surface stabilizers with different chain length and charged group were designed to reveal the influence of electrostatic and van der Waals forces between silica and stabilizer on the dispersion of silica particles in aqueous medium. Results showed surface stabilizer with longer alkyl chain and charged group exerted best ability to deaggregate silica, leading to a hydrodynamic size of 51.1 nm. Surface stabilizer designing with rational structure is a promising solution for deagglomerating and reducing process time and energy. Giving the designability and adaptability of surface stabilizer, this method is of potential for dispersion of other inorganic nanoparticles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.