Abstract
Perovskite-inspired materials (PIMs) provide low-toxicity and air-stable photo-absorbers for several possible optoelectronic devices. In this context, the pnictogen-based halides Cu2AgBiI6 (CABI) are receiving increasing attention in photovoltaics. Despite extensive studies on power conversion efficiency and shelf-life stability, nearly no attention has been given to the physicochemical properties of the interface between CABI and the hole transport layer (HTL), which can strongly impact overall cell operations. Here, we address this specific interface with three polymeric HTLs: poly(N,N'-bis(4-butylphenyl)-N,N'-bis(phenyl)benzidine) (poly-TPD), thiophene-(poly(3-hexylthiophene)) (P3HT), and poly(bis(4-phenyl)(2,4,6-trimethylphenyl)amine) (PTAA). Our findings reveal that devices fabricated with poly-TPD and P3HT outperform the commonly used Spiro-OMeTAD in terms of device operational stability, while PTAA exhibits worse performances. Density functional theory calculations unveil the electronic and chemical interactions at the CABI-HTL interfaces, providing new insights into observed experimental behaviors. Our study highlights the importance of addressing the buried interfaces in PIM-based devices to enhance their overall performance and stability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The journal of physical chemistry. C, Nanomaterials and interfaces
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.