Abstract

Sphingolipids are a vital component of plant cellular endomembranes and carry out multiple functional and regulatory roles. Different sphingolipid species confer rigidity to the membrane structure, facilitate trafficking of secretory proteins, and initiate programmed cell death. Although the regulation of the sphingolipid pathway is yet to be uncovered, increasing evidence has pointed to orosomucoid proteins (ORMs) playing a major regulatory role and potentially interacting with a number of components in the pathway, including both enzymes and sphingolipids. However, experimental exploration of new regulatory interactions is time consuming and often infeasible. In this work, a computational approach was taken to address this challenge. A metabolic network of the sphingolipid pathway in plants was reconstructed. The steady-state rates of reactions in the network were then determined through measurements of growth and cellular composition of the different sphingolipids in Arabidopsis seedlings. The Ensemble modeling framework was modified to accurately account for activation mechanisms and subsequently used to generate sets of kinetic parameters that converge to the measured steady-state fluxes in a thermodynamically consistent manner. In addition, the framework was appended with an additional module to automate screening the parameters and to output models consistent with previously reported network responses to different perturbations. By analyzing the network's response in the presence of different combinations of regulatory mechanisms, the model captured the experimentally observed repressive effect of ORMs on serine palmitoyltransferase (SPT). Furthermore, predictions point to a second regulatory role of ORM proteins, namely as an activator of class II (or LOH1 and LOH3) ceramide synthases. This activating role was found to be modulated by the concentration of free ceramides, where an accumulation of these sphingolipid species dampened the activating effect of ORMs on ceramide synthase. The predictions pave the way for future guided experiments and have implications in engineering crops with higher biotic stress tolerance.

Highlights

  • Sphingolipids are a diverse group of membrane lipids essential in eukaryotic organisms

  • Due to their vital functional and regulatory roles in plant cells, increasing interest has gone into obtaining a complete understanding of the regulatory behavior of the sphingolipid pathway

  • The model predicts regulatory interactions between ceramides, orosomucoid proteins (ORMs), and ceramide synthases. This framework can pave the way for biochemists to systematically identify plausible regulatory networks in understudied metabolic networks where knowledge on the underlying regulatory mechanisms is often missing

Read more

Summary

Introduction

Sphingolipids are a diverse group of membrane lipids essential in eukaryotic organisms. Sphingolipids comprise up to 40% of the plasma membrane and are abundant components of cellular endomembranes such as the endoplasmic reticulum (ER), Golgi, and tonoplast [1,2]. Through their unique structural features, sphingolipids carry out several essential functions in plant cells. The sphingolipid biosynthesis pathway starts in the ER with the condensation of palmitoylCoA and serine to produce 3-ketosphinganine. LCBs can be linked to a fatty acyl-CoA, typically with chain-lengths ranging from 16 to 26 carbon atoms, to produce ceramides [8,9] by the activities of ceramide synthases. The ceramide backbone is further modified by glycosylation at its C-1 position to form GlcCer or linked to inositol phosphate and further glycosylated in Golgi bodies to yield GIPCs, the most abundant glycosphingolipid in plant cells [1,11,12]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call