Abstract

Abstract We extend results first announced by Franz et al., that identified vA 351 = H346 in the Hyades as a multiple star system containing a white dwarf. With Hubble Space Telescope Fine Guidance Sensor fringe tracking and scanning, and more recent speckle observations, all spanning 20.7 years, we establish a parallax, relative orbit, and mass fraction for two components, with a period, and total mass 2.1 . With ground-based radial velocities from the McDonald Observatory Otto Struve 2.1 m Telescope Sandiford Spectrograph, and Center for Astrophysics Digital Speedometers, spanning 37 years, we find that component B consists of BC, two M dwarf stars orbiting with a very short period ( days), having a mass ratio / = 0.95. We confirm that the total mass of the system can only be reconciled with the distance and component photometry by including a fainter, higher-mass component. The quadruple system consists of three M dwarfs (A, B, C) and one white dwarf (D). We determine individual M dwarf masses = 0.53 ± 0.10 , = 0.43 ± 0.04 , and = 0.41 ± 0.04 . The white dwarf mass, 0.54 ± 0.04 , comes from cooling models, an assumed Hyades age of 670 Myr, and consistency with all previous and derived astrometric, photometric, and radial velocity results. Velocities from Hα and He i emission lines confirm the BC period derived from absorption lines, with similar (He i) and higher (Hα) velocity amplitudes. We ascribe the larger Hα amplitude to emission from a region each component shadows from the other, depending on the line of sight.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call