Abstract

Abstract In the few previous measurements of topographic form drag in the ocean, drag that is much larger than a typical bluff body drag estimate has been consistently found. In this work, theory combined with a numerical model of tidal flow around a headland in a channel gives insight into the mechanisms that create form drag in oscillating flow situations. The total form drag is divided into two parts: the inertial drag, which is derived from a local potential flow solution, and the separation drag, which accounts for flow features such as eddies. The inertial drag can have a large magnitude, yet it cannot do work on the flow because its phase is in quadrature with the velocity. The separation drag has a magnitude that is nearly equal to the bluff body drag and accounts for all of the energy removed from the flow by the topography. In addition, the dependence of the form drag on the tidal excursion distance and the aspect ratio of the headlands were determined with a series of numerical experiments. This theory explains why form drag can be so large in the ocean, and it provides a method for separating the pressure field into the parts that can and cannot extract energy from the flow.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.