Abstract

Here, we report the first complete genomes of three cultivable treponeme species from bovine digital dermatitis (DD) skin lesions, two comparative human treponemes, considered indistinguishable from bovine DD species, and a bovine gastrointestinal (GI) treponeme isolate. Key genomic differences between bovine and human treponemes implicate microbial mechanisms that enhance knowledge of how DD, a severe disease of ruminants, has emerged into a prolific, worldwide disease. Bovine DD treponemes have additional oxidative stress genes compared to nearest human-isolated relatives, suggesting better oxidative stress tolerance, and potentially explaining how bovine strains can colonize skin surfaces. Comparison of both bovine DD and GI treponemes as well as bovine pathogenic and human non-pathogenic saprophyte Treponema phagedenis strains indicates genes encoding a five-enzyme biosynthetic pathway for production of 2,3-diacetamido-2,3-dideoxy-d-mannuronic acid, a rare di-N-acetylated mannuronic acid sugar, as important for pathogenesis. Bovine T. phagedenis strains further differed from human strains by having unique genetic clusters including components of a type IV secretion system and a phosphate utilisation system including phoU, a gene associated with osmotic stress survival. Proteomic analyses confirmed bovine derived T. phagedenis exhibits expression of PhoU but not the putative secretion system, whilst the novel mannuronic acid pathway was expressed in near entirety across the DD treponemes. Analysis of osmotic stress response in water identified a difference between bovine and human T. phagedenis with bovine strains exhibiting enhanced survival. This novel mechanism could enable a selective advantage, allowing environmental persistence and transmission of bovine T. phagedenis. Finally, we investigated putative outer membrane protein (OMP) ortholog families across the DD treponemes and identified several families as multi-specific adhesins capable of binding extra cellular matrix (ECM) components. One bovine pathogen specific adhesin ortholog family showed considerable serodiagnostic potential with the Treponema medium representative demonstrating considerable disease specificity (91.6%). This work has shed light on treponeme host adaptation and has identified candidate molecules for future diagnostics, vaccination and therapeutic intervention.

Highlights

  • The Treponema were first described in detail by Schaudinn and Hoffman in 1905 during the discovery of the agent of syphilis [1] and are a continually expanding genus of bacteria with diverse roles in a variety of niches

  • We characterise the genomes of several bovine digital dermatitis (DD) treponeme species as well as related bacteria from humans and the bovine gastrointestinal tract

  • This increased understanding of the considered causal pathogens of bovine DD, together with the genomic and proteomic resources produced by this study should underpin future diagnostic, vaccination and therapeutics studies to combat this severe disease of ruminants

Read more

Summary

Introduction

The Treponema were first described in detail by Schaudinn and Hoffman in 1905 during the discovery of the agent of syphilis [1] and are a continually expanding genus of bacteria with diverse roles in a variety of niches These spiral microorganisms are generally considered anaerobic, have a fastidious nature making their study difficult, and have been frequently reported within human and animal oral, genital and rectal areas as well as the broader gastrointestinal (GI) tract [2,3,4]. Due to the fastidiousness of Treponema spp., many taxa remain uncultured or poorly characterised, typically only being described by their 16S rRNA gene sequence identity

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call