Abstract

Recently, 2 physiologically distinct phases of short-interval intracortical inhibition (SICI) have been identified, a larger phase at interstimulus interval (ISI) 3 ms and a smaller phase at ISI 1 ms. While the former is mediated by synaptic processes, the mechanisms underlying the first phase of SICI remain a matter of debate. Separately, it is known that fatiguing hand exercise reduces SICI, a measure of cortical excitability. Consequently, the present study assessed effects of fatiguing hand exercise on the 2 SICI phases, using threshold tracking transcranial magnetic stimulation techniques, to yield further information on underlying mechanisms. Studies were undertaken on 22 subjects, with SICI assessed at baseline, after each voluntary contraction (VC) period of 120 s and 5, 10, and 20 min after last VC, with responses recorded over abductor pollicis brevis. Exercise resulted in significant reduction of SICI at ISI 1 ms (SICIbaseline 9.5 ± 2.7%; SICIMAXIMUM REDUCTION 2.5 ± 2.5%, P < 0.05) and 3 ms (SICIbaseline 16.8 ± 1.7%; SICIMAXIMUM REDUCTION 11.6 ± 2.1%, P < 0.05), with the time course of reduction being different for the 2 phases. Taken together, findings from the present study suggest that synaptic processes were the predominant mechanism underlying the different phases of SICI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.