Abstract

The molecular structure of water is dynamic, with intermolecular (H)-bond interactions being modified by both electronic charge transfer and nuclear quantum effects (NQEs). Electronic charge transfer and NQEs potentially change under acidic / basic conditions, but such details have not been measured. Here, we developed correlated vibrational spectroscopy, a symmetry-based method that distinctively separates interacting from non-interacting molecules in self- and cross-correlation spectra, giving access to previously inaccessible information. We found that OH − donated ~8% more negative charge to the H-bond network of water and H 3 O + accepted ~4% less negative charge from the H-bond network of water. D 2 O had ~9% more H-bonds compared to H 2 O, and acidic solutions displayed more dominant NQEs than basic ones.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.