Abstract

The accurate expression of proteins requires the ribosome to efficiently undergo elaborate conformational rearrangements. The most dramatic of these motions is subunit rotation, which is necessary for tRNA molecules to transition between ribosomal binding sites. While rigid-body descriptions provide a qualitative picture of the process, obtaining quantitative mechanistic insights requires one to account for the relationship between molecular flexibility and collective dynamics. Using simulated rotation events, we assess the quality of experimentally accessible measures for describing the collective displacement of the ∼4000-residue small subunit. For this, we ask whether each coordinate is able to identify the underlying free-energy barrier and transition state ensemble (TSE). We find that intuitive structurally motivated coordinates (e.g., rotation angle, interprotein distances) can distinguish between the endpoints, though they are poor indicators of barrier-crossing events, and they underestimate the free-energy barrier. In contrast, coordinates based on intersubunit bridges can identify the TSE. We additionally verify that the committor probability for the putative TSE configurations is 0.5, a hallmark feature of any transition state. In terms of structural properties, these calculations implicate a transition state in which flexibility allows for asynchronous rearrangements of the bridges, as the ribosome adopts a partially rotated orientation. This provides a theoretical foundation, upon which experimental techniques may precisely quantify the energy landscape of the ribosome.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.