Abstract

An understanding of the structural basis for protein-protein interactions, and molecular recognition in general, requires complete characterization of binding energetics. Not only does this include quantification of the changes that occur in all of the thermodynamic parameters upon binding, including the enthalpy, entropy and heat capacity, but a description of how these changes are modulated by environmental conditions, most notably pH. Here, we have investigated the binding of turkey ovomucoid third domain (OMTKY3), a potent serine protease inhibitor, to the serine protease porcine pancreatic elastase (PPE) using isothermal titration calorimetry and structure-based thermodynamic calculations. We find that near neutral pH the binding energetics are influenced by a shift in the p Kaof an ionizable group, most likely histidine 57 in the protease active site. Consequently, the observed binding energetics are strongly dependent upon solution conditions. Through a global analysis, the intrinsic energetics of binding have been determined, as have those associated with the p Kashift. The protonation energetics suggest that the drop in p Kais largely due to desolvation of the histidine residue. The resulting deprotonation is necessary for the enzymatic function of elastase. Intrinsically, at 25°C the binding of OMTKY3 to PPE is characterized by an almost negligible enthalpy change, a large positive entropy change, and a large negative heat capacity change. These parameters are consistent with a model of the OMTKY3-PPE complex, which shows a large and significantly apolar protein-protein interface. Thermodynamic calculations based upon changes that occur in polar and apolar solvent-accessible surface area are in very good agreement with the measured intrinsic binding energetics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call