Abstract

The form of the electron density change (or difference) is usable as a kind of fingerprint of the electronic structural origin or mechanism that gives rise to intermolecular interactions. Here, this method is applied to halogen-bonding brominated systems to dissect the electric quadrupolar effect (arising from the anisotropic distribution of the valence electrons and intrinsic to the s2px 2py 2pz electronic configuration) and the polarization effect (induced by a partial negative charge of the halogen-bond accepting atom). It is shown that a suitable location of the "extra point" for placing a partial positive charge to represent the former is crucial and is clearly found from the electron density difference from the spherically isotropic Br- ion, while the latter consists of the dipolar polarization of the Br atom and the delocalized polarization of the whole molecule. A practical way for application to molecular dynamics simulations, etc., to represent these two factors is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call