Abstract

The aggregation of transactive response deoxyribonucleic acid (DNA) binding protein of 43 kDa (TDP-43) into ubiquitin-positive inclusions is closely associated with amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration, and chronic traumatic encephalopathy. The 370–375 fragment of TDP-43 (370GNNSYS375, TDP-43370-375), the amyloidogenic hexapeptides, can be prone to forming pathogenic amyloid fibrils with the characteristic of steric zippers. Previous experiments reported the ALS-associated mutation, serine 375 substituted by glycine (S375G) is linked to early onset disease and protein aggregation of TDP-43. Based on this, it is necessary to explore the underlying molecular mechanisms. By utilizing all-atom molecular dynamics (MD) simulations of 102 μs in total, we investigated the impact of S375G mutation on the conformational ensembles and oligomerization dynamics of TDP-43370-375 peptides. Our replica exchange MD simulations show that S375G mutation could promote the unstructured conformation formation and induce peptides to form a loose packed oligomer, thus inhibiting the aggregation of TDP-43370-375. Further analyses suggest that S375G mutation displays a reduction effect on the number of total hydrogen bonds and contacts among TDP-43370-375 peptides. Hydrogen bonding and polar interactions among TDP-43370-375 peptides, as well as Y374-Y374 π-π stacking interaction, are attenuated by S375G mutation. Additional microsecond MD simulations demonstrate that S375G mutation could prohibit the conformational conversion to β-structure-rich aggregates and possess an inhibitory effect on the oligomerization dynamics of TDP-43370-375. This study offers for the first time of molecular insights into the S375G mutation affecting the aggregation of TDP-43370-375 at the atomic level, and may open new avenues in the development of future site-specific mutation therapeutics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.